Both kappa and mu opioid agonists inhibit glutamatergic input to ventral tegmental area neurons.
نویسندگان
چکیده
The ventral tegmental area (VTA) plays a critical role in motivation and reinforcement. Kappa and mu opioid receptor (KOP-R and MOP-R) agonists microinjected into the VTA produce powerful and largely opposing motivational actions. Glutamate transmission within the VTA contributes to these motivational effects. Therefore information about opioid control of glutamate release onto VTA neurons is important. To address this issue, we performed whole cell patch-clamp recordings in VTA slices and measured excitatory postsynaptic currents (EPSCs). There are several classes of neuron in the VTA: principal, secondary, and tertiary. The KOP-R agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U69593; 1 microM) produced a small reduction in EPSC amplitude in principal neurons (14%) and a significantly larger inhibition in secondary (47%) and tertiary (33%) neurons. The MOP-R agonist [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO; 3 microM) inhibited glutamate release in principal (42%), secondary (45%), and tertiary neurons (35%). Unlike principal and tertiary neurons, in secondary neurons, the magnitude of the U69593 EPSC inhibition was positively correlated with that produced by DAMGO. Finally, DAMGO did not occlude the U69593 effect in principal neurons, suggesting that some glutamatergic terminals are independently controlled by KOP and MOP receptor activation. These findings show that MOP-R and KOP-R agonists regulate excitatory input onto each VTA cell type.
منابع مشابه
Opioid modulation of ventral pallidal afferents to ventral tegmental area neurons.
Activation of mu opioid receptors within the ventral tegmental area (VTA) can produce reward through the inhibition of GABAergic inputs. GABAergic neurons in the ventral pallidum (VP) provide a major input to VTA neurons. To determine the specific VTA neuronal targets of VP afferents and their sensitivity to mu opioid receptor agonists, we virally expressed channel rhodopsin (ChR2) in rat VP ne...
متن کاملKappa opioid inhibition of somatodendritic dopamine inhibitory postsynaptic currents.
In the midbrain, dopamine neurons can release dopamine somatodendritically. This results in an inhibitory postsynaptic current (IPSC) within adjacent dopamine cells that occurs by the activation of inhibitory D(2) autoreceptors. Kappa, but not mu/delta, opioid receptors inhibit this IPSC. The aim of the present study was to determine the mechanism by which kappa-opioid receptors inhibit the dop...
متن کاملPresynaptic mu-opioid receptors regulate a late step of the secretory process in rat ventral tegmental area GABAergic neurons.
Gamma-aminobutyric acid (GABA)-containing interneurons of the ventral tegmental area (VTA) regulate the activity of dopaminergic neurons. These GABAergic interneurons are known to be innervated by synaptic terminals containing enkephalin, an endogenous ligand of mu-opioid receptors. Bath application of mu-opioid receptor agonists inhibits the activity of VTA GABAergic neurons but the mechanism ...
متن کاملYin and yang of VTA opioid signaling. Focus on "both kappa and mu opioid agonists inhibit glutamatergic input to ventral tegmental area neurons".
In opioid signaling in the brain and -opioid receptors (MOR and KOR) are like the yin and yang principles in Chinese philosophy, they always act as an opposing pair. The antagonistic interactions between MOR and KOR are widespread in the CNS. In few receptor families, two closely related members with such overlapping expression in the brain produce such opposite behavioral effects. In humans, M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 93 6 شماره
صفحات -
تاریخ انتشار 2005